(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

a__f(X, X) → a__f(a, b)
a__ba
mark(f(X1, X2)) → a__f(mark(X1), X2)
mark(b) → a__b
mark(a) → a
a__f(X1, X2) → f(X1, X2)
a__bb

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

a__f(z0, z0) → a__f(a, b)
a__f(z0, z1) → f(z0, z1)
a__ba
a__bb
mark(f(z0, z1)) → a__f(mark(z0), z1)
mark(b) → a__b
mark(a) → a
Tuples:

A__F(z0, z0) → c(A__F(a, b))
MARK(f(z0, z1)) → c4(A__F(mark(z0), z1), MARK(z0))
MARK(b) → c5(A__B)
S tuples:

A__F(z0, z0) → c(A__F(a, b))
MARK(f(z0, z1)) → c4(A__F(mark(z0), z1), MARK(z0))
MARK(b) → c5(A__B)
K tuples:none
Defined Rule Symbols:

a__f, a__b, mark

Defined Pair Symbols:

A__F, MARK

Compound Symbols:

c, c4, c5

(3) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)

Removed 2 of 3 dangling nodes:

A__F(z0, z0) → c(A__F(a, b))
MARK(b) → c5(A__B)

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

a__f(z0, z0) → a__f(a, b)
a__f(z0, z1) → f(z0, z1)
a__ba
a__bb
mark(f(z0, z1)) → a__f(mark(z0), z1)
mark(b) → a__b
mark(a) → a
Tuples:

MARK(f(z0, z1)) → c4(A__F(mark(z0), z1), MARK(z0))
S tuples:

MARK(f(z0, z1)) → c4(A__F(mark(z0), z1), MARK(z0))
K tuples:none
Defined Rule Symbols:

a__f, a__b, mark

Defined Pair Symbols:

MARK

Compound Symbols:

c4

(5) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing tuple parts

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

a__f(z0, z0) → a__f(a, b)
a__f(z0, z1) → f(z0, z1)
a__ba
a__bb
mark(f(z0, z1)) → a__f(mark(z0), z1)
mark(b) → a__b
mark(a) → a
Tuples:

MARK(f(z0, z1)) → c4(MARK(z0))
S tuples:

MARK(f(z0, z1)) → c4(MARK(z0))
K tuples:none
Defined Rule Symbols:

a__f, a__b, mark

Defined Pair Symbols:

MARK

Compound Symbols:

c4

(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

MARK(f(z0, z1)) → c4(MARK(z0))
We considered the (Usable) Rules:none
And the Tuples:

MARK(f(z0, z1)) → c4(MARK(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(MARK(x1)) = [5]x1   
POL(c4(x1)) = x1   
POL(f(x1, x2)) = [1] + x1   

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

a__f(z0, z0) → a__f(a, b)
a__f(z0, z1) → f(z0, z1)
a__ba
a__bb
mark(f(z0, z1)) → a__f(mark(z0), z1)
mark(b) → a__b
mark(a) → a
Tuples:

MARK(f(z0, z1)) → c4(MARK(z0))
S tuples:none
K tuples:

MARK(f(z0, z1)) → c4(MARK(z0))
Defined Rule Symbols:

a__f, a__b, mark

Defined Pair Symbols:

MARK

Compound Symbols:

c4

(9) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(10) BOUNDS(O(1), O(1))