(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
a__f(X, X) → a__f(a, b)
a__b → a
mark(f(X1, X2)) → a__f(mark(X1), X2)
mark(b) → a__b
mark(a) → a
a__f(X1, X2) → f(X1, X2)
a__b → b
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
a__f(z0, z0) → a__f(a, b)
a__f(z0, z1) → f(z0, z1)
a__b → a
a__b → b
mark(f(z0, z1)) → a__f(mark(z0), z1)
mark(b) → a__b
mark(a) → a
Tuples:
A__F(z0, z0) → c(A__F(a, b))
MARK(f(z0, z1)) → c4(A__F(mark(z0), z1), MARK(z0))
MARK(b) → c5(A__B)
S tuples:
A__F(z0, z0) → c(A__F(a, b))
MARK(f(z0, z1)) → c4(A__F(mark(z0), z1), MARK(z0))
MARK(b) → c5(A__B)
K tuples:none
Defined Rule Symbols:
a__f, a__b, mark
Defined Pair Symbols:
A__F, MARK
Compound Symbols:
c, c4, c5
(3) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)
Removed 2 of 3 dangling nodes:
A__F(z0, z0) → c(A__F(a, b))
MARK(b) → c5(A__B)
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
a__f(z0, z0) → a__f(a, b)
a__f(z0, z1) → f(z0, z1)
a__b → a
a__b → b
mark(f(z0, z1)) → a__f(mark(z0), z1)
mark(b) → a__b
mark(a) → a
Tuples:
MARK(f(z0, z1)) → c4(A__F(mark(z0), z1), MARK(z0))
S tuples:
MARK(f(z0, z1)) → c4(A__F(mark(z0), z1), MARK(z0))
K tuples:none
Defined Rule Symbols:
a__f, a__b, mark
Defined Pair Symbols:
MARK
Compound Symbols:
c4
(5) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
a__f(z0, z0) → a__f(a, b)
a__f(z0, z1) → f(z0, z1)
a__b → a
a__b → b
mark(f(z0, z1)) → a__f(mark(z0), z1)
mark(b) → a__b
mark(a) → a
Tuples:
MARK(f(z0, z1)) → c4(MARK(z0))
S tuples:
MARK(f(z0, z1)) → c4(MARK(z0))
K tuples:none
Defined Rule Symbols:
a__f, a__b, mark
Defined Pair Symbols:
MARK
Compound Symbols:
c4
(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
MARK(f(z0, z1)) → c4(MARK(z0))
We considered the (Usable) Rules:none
And the Tuples:
MARK(f(z0, z1)) → c4(MARK(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(MARK(x1)) = [5]x1
POL(c4(x1)) = x1
POL(f(x1, x2)) = [1] + x1
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
a__f(z0, z0) → a__f(a, b)
a__f(z0, z1) → f(z0, z1)
a__b → a
a__b → b
mark(f(z0, z1)) → a__f(mark(z0), z1)
mark(b) → a__b
mark(a) → a
Tuples:
MARK(f(z0, z1)) → c4(MARK(z0))
S tuples:none
K tuples:
MARK(f(z0, z1)) → c4(MARK(z0))
Defined Rule Symbols:
a__f, a__b, mark
Defined Pair Symbols:
MARK
Compound Symbols:
c4
(9) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(10) BOUNDS(O(1), O(1))